Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Theano Op in C for CPU


Another inefficiency arises from the fact the Python implementation of an operator adds a significant overhead each time computations are performed, that is, for each instance of our operator in the graph. The Python code is not compiled as the rest of the graph by Theano in C and the overhead occurs when the C implementation is wrapped into Python and data is exchanged.

To remedy this, it is possible to directly write some C code that will be incorporated into the code of the rest of the graph and compiled together.

When implementing an operator directly in C, NumPy is the underlying library to manage arrays, with the the NumPy-API extending Python C-API. The Python class defining the new C operator does not have to implement the perform() method; instead, it returns the C code to incorporate in the c_code(), c_support_code() and c_support_code_apply() methods:

def c_code_cache_version(self):
    return (6, 0)

def c_support_code(self):
    c_support_code = """
   ...