Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Optimization and other update rules


Learning rate is a very important parameter to set correctly. Too low a learning rate will make it difficult to learn and will train slower, while too high a learning rate will increase sensitivity to outlier values, increase the amount of noise in the data, train too fast to learn generalization, and get stuck in local minima:

When training loss does not improve anymore for one or a few more iterations, the learning rate can be reduced by a factor:

It helps the network learn fine-grained differences in the data, as shown when training residual networks (Chapter 7, Classifying Images with Residual Networks):

To check the training process, it is usual to print the norm of the parameters, the gradients, and the updates, as well as NaN values.

The update rule seen in this chapter is the simplest form of update, known as Stochastic Gradient Descent (SGD). It is a good practice to clip the norm to avoid saturation and NaN values. The updates list given to the theano...