Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

A dataset for natural language


As a dataset, any text corpus can be used, such as Wikipedia, web articles, or even with symbols such as code or computer programs, theater plays, and poems; the model will catch and reproduce the different patterns in the data.

In this case, let's use tiny Shakespeare texts to predict new Shakespeare texts or at least, new texts written in a style inspired by Shakespeare; two levels of predictions are possible, but can be handled in the same way:

  • At the character level: Characters belong to an alphabet that includes punctuation, and given the first few characters, the model predicts the next characters from an alphabet, including spaces to build words and sentences. There is no constraint for the predicted word to belong to a dictionary and the objective of training is to build words and sentences close to real ones.

  • At the word level: Words belong to a dictionary that includes punctuation, and given the first few words, the model predicts the next word out...