Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Training loss comparison


During training, the learning rate might be strong after a certain number of epochs for fine-tuning. Decreasing the learning rate when the loss does not decrease anymore will help during the last steps of training. To decrease the learning rate, we need to define it as an input variable during compilation:

lr = T.scalar('learning_rate')
train_model = theano.function(inputs=[x,y,lr], outputs=cost,updates=updates)

During training, we adjust the learning rate, decreasing it if the training loss is not better:

if (len(train_loss) > 1 and train_loss[-1] > train_loss[-2]):
    learning_rate = learning_rate * 0.5

As a first experiment, let's see the impact of the size of the hidden layer on the training loss for a simple RNN:

More hidden units improve training speed and might be better in the end. To check this, we should run it for more epochs.

Comparing the training of the different network types, in this case, we do not observe any improvement with LSTM and GRU:

This...