Book Image

R Deep Learning Cookbook

By : PKS Prakash, Achyutuni Sri Krishna Rao
Book Image

R Deep Learning Cookbook

By: PKS Prakash, Achyutuni Sri Krishna Rao

Overview of this book

Deep Learning is the next big thing. It is a part of machine learning. It's favorable results in applications with huge and complex data is remarkable. Simultaneously, R programming language is very popular amongst the data miners and statisticians. This book will help you to get through the problems that you face during the execution of different tasks and Understand hacks in deep learning, neural networks, and advanced machine learning techniques. It will also take you through complex deep learning algorithms and various deep learning packages and libraries in R. It will be starting with different packages in Deep Learning to neural networks and structures. You will also encounter the applications in text mining and processing along with a comparison between CPU and GPU performance. By the end of the book, you will have a logical understanding of Deep learning and different deep learning packages to have the most appropriate solutions for your problems.
Table of Contents (17 chapters)
Title Page
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Setting up a Restricted Boltzmann machine for Bernoulli distribution input


In this section, let's set up a restricted Boltzmann machine for Bernoulli distributed input data, where each attribute has values ranging from 0 to 1 (equivalent to a probability distribution). The dataset (MNIST) used in this recipe has input data satisfying a Bernoulli distribution.

An RBM comprises of two layers: a visible layer and a hidden layer. The visible layer is an input layer of nodes equal to the number of input attributes. In our case, each image in the MNIST dataset is defined using 784 pixels (28 x 28 size). Hence, our visible layer will have 784 nodes.

On the other hand, the hidden layer is generally user-defined. The hidden layer has a set of binary activated nodes, with each node having a probability of linkage with all other visible nodes. In our case, the hidden layer will have 900 nodes. As an initial step, all the nodes in the visible layer are connected with all the nodes in the hidden layer...