Book Image

Machine Learning with Swift

By : Jojo Moolayil, Alexander Sosnovshchenko, Oleksandr Baiev
Book Image

Machine Learning with Swift

By: Jojo Moolayil, Alexander Sosnovshchenko, Oleksandr Baiev

Overview of this book

Machine learning as a field promises to bring increased intelligence to the software by helping us learn and analyse information efficiently and discover certain patterns that humans cannot. This book will be your guide as you embark on an exciting journey in machine learning using the popular Swift language. We’ll start with machine learning basics in the first part of the book to develop a lasting intuition about fundamental machine learning concepts. We explore various supervised and unsupervised statistical learning techniques and how to implement them in Swift, while the third section walks you through deep learning techniques with the help of typical real-world cases. In the last section, we will dive into some hard core topics such as model compression, GPU acceleration and provide some recommendations to avoid common mistakes during machine learning application development. By the end of the book, you'll be able to develop intelligent applications written in Swift that can learn for themselves.
Table of Contents (18 chapters)
Title Page
Packt Upsell
Contributors
Preface
Index

Preventing a neural network from growing big


To leverage cutting-edge deep learning networks on mobile platforms, it becomes extremely important to effectively tune the learning of a network such that we can do the most with the least resources. The implementation of the neural network for OCR by the Google Translate team is an interesting one to understand the few thumb rules to circumvent the network from growing too big.

Following are excerpts from the press release from Google, found at: https://translate.googleblog.com/2015/07/how-google-translate-squeezes-deep.html:

"We needed to develop a very small neural net, and put severe limits on how much we tried to teach it-in essence, put an upper bound on the density of information it handles. The challenge here was in creating the most effective training data. Since we're generating our own training data, we put a lot of effort into including just the right data and nothing more. For instance, we want to be able to recognize a letter with...