Book Image

Scala for Machine Learning, Second Edition - Second Edition

Book Image

Scala for Machine Learning, Second Edition - Second Edition

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (27 chapters)
Scala for Machine Learning Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Model categorization


A model can be predictive, descriptive, or adaptive.

Predictive models discover patterns in historical data and extract fundamental trends and relationships between factors (or features). They are used to predict and classify future events or observations. Predictive analytics is used in a variety of fields, including marketing, insurance, and pharmaceuticals. Predictive models are created through supervised learning using a pre-selected training set.

Descriptive models attempt to find unusual patterns or affinities in data by grouping observations into clusters with similar properties. These models define the first and important step in knowledge discovery. They are commonly generated through unsupervised learning.

A third category of models, known as adaptive modeling, is created through reinforcement learning. Reinforcement learning consists of one or several decision-making agents that recommend, and possibly execute, actions in an attempt to solve a problem, optimizing an objective function or resolving constraints.