Book Image

Scala for Machine Learning, Second Edition - Second Edition

Book Image

Scala for Machine Learning, Second Edition - Second Edition

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (27 chapters)
Scala for Machine Learning Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Genetic algorithm components


Genetic algorithms have the following three components:

  • Genetic encoding (and decoding): This is the conversion of a solution candidate and its components into binary format (an array of bits or a string of 0 and 1 characters)

  • Genetic operations: This is the application of a set of operators to extract the best (most genetically fit) candidates (chromosomes)

  • Genetic fitness function: This is the evaluation of the fittest candidate using an objective function

Encodings and the fitness function are problem-dependent. Genetic operators are not.

Encodings

Let's consider the optimization problem in machine learning that consists of maximizing the log likelihood or minimizing the loss function. The goal is to compute the parameters or weights, w={wi}, that minimize or maximize a function f(w). In the case of a nonlinear model, variables may depend on other variables, which make the optimization problem particularly challenging.

Value encoding

The genetic algorithm manipulates...