Book Image

Scala for Machine Learning, Second Edition - Second Edition

Book Image

Scala for Machine Learning, Second Edition - Second Edition

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (27 chapters)
Scala for Machine Learning Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Assessing a model


Evaluating a model is an essential part of the workflow. There is no point in creating the most sophisticated model if you do not have the tools to assess its quality. The validation process consists of defining some quantitative reliability criteria, setting a strategy such as a K-fold cross-validation scheme and selecting the appropriate labeled data.

Validation

The purpose of this section is to create a reusable Scala class to validate models. For starters, the validation process relies on a set of metrics to quantify the fitness of a model generated through training.

Key quality metrics

Let's consider a simple classification model with two classes defined as positive (with respect to negative) represented with black (with respect to white) color in the diagram below. Data scientists use the following terminology:

  • True Positives (TPs): These are observations that are correctly labeled as belonging to the positive class (white dots on dark background)

  • True Negatives (TNs...