Book Image

Deep Learning with Hadoop

By : Dipayan Dev
Book Image

Deep Learning with Hadoop

By: Dipayan Dev

Overview of this book

This book will teach you how to deploy large-scale dataset in deep neural networks with Hadoop for optimal performance. Starting with understanding what deep learning is, and what the various models associated with deep neural networks are, this book will then show you how to set up the Hadoop environment for deep learning. In this book, you will also learn how to overcome the challenges that you face while implementing distributed deep learning with large-scale unstructured datasets. The book will also show you how you can implement and parallelize the widely used deep learning models such as Deep Belief Networks, Convolutional Neural Networks, Recurrent Neural Networks, Restricted Boltzmann machines and autoencoder using the popular deep learning library Deeplearning4j. Get in-depth mathematical explanations and visual representations to help you understand the design and implementations of Recurrent Neural network and Denoising Autoencoders with Deeplearning4j. To give you a more practical perspective, the book will also teach you the implementation of large-scale video processing, image processing and natural language processing on Hadoop. By the end of this book, you will know how to deploy various deep neural networks in distributed systems using Hadoop.
Table of Contents (16 chapters)
Deep Learning with Hadoop
About the Author
About the Reviewers
Customer Feedback

Basic layers of CNN

A CNN is composed of a sequence of layers, where every layer of the network goes through a differentiable function to transform itself from one volume of activation to another. Four main types of layers are used to build a CNN: Convolutional layer, Rectified Linear Units layer, Pooling layer, and Fully-connected layer. All these layers are stacked together to form a full CNN.

A regular CNN could have the following architecture:


However, in a deep CNN, there are generally more layers interspersed between these five basic layers.

A classic deep neural network will have the following structure:

Input -> Conv->ReLU->Conv->ReLu->Pooling->ReLU->Conv->ReLu->Pooling->Fully Connected

AlexNet, as mentioned in the earlier section, can be taken as a perfect example for this kind of structure. The architecture of AlexNet is shown in Figure 3.4. After every layer, an implicit ReLU non-linearity has been added. We will explain...