Book Image

Python for Finance - Second Edition

By : Yuxing Yan
5 (1)
Book Image

Python for Finance - Second Edition

5 (1)
By: Yuxing Yan

Overview of this book

This book uses Python as its computational tool. Since Python is free, any school or organization can download and use it. This book is organized according to various finance subjects. In other words, the first edition focuses more on Python, while the second edition is truly trying to apply Python to finance. The book starts by explaining topics exclusively related to Python. Then we deal with critical parts of Python, explaining concepts such as time value of money stock and bond evaluations, capital asset pricing model, multi-factor models, time series analysis, portfolio theory, options and futures. This book will help us to learn or review the basics of quantitative finance and apply Python to solve various problems, such as estimating IBM’s market risk, running a Fama-French 3-factor, 5-factor, or Fama-French-Carhart 4 factor model, estimating the VaR of a 5-stock portfolio, estimating the optimal portfolio, and constructing the efficient frontier for a 20-stock portfolio with real-world stock, and with Monte Carlo Simulation. Later, we will also learn how to replicate the famous Black-Scholes-Merton option model and how to price exotic options such as the average price call option.
Table of Contents (23 chapters)
Python for Finance Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Estimating Pastor and Stambaugh (2003) liquidity measure


Based on the methodology and empirical evidence in Campbell, Grossman, and Wang (1993), Pastor and Stambaugh (2003) designed the following model to measure individual stock's liquidity and the market liquidity:

Here, yt is the excess stock return, Rt-Rf , t, on day t, Rt is the return for the stock, Rf,t is the risk-free rate, x1,t is the market return, and x2,t is the signed dollar trading volume:

pt is the stock price, and volume, t is the trading volume. The regression is run based on daily data for each month. In other words, for each month, we get one β2 that is defined as the liquidity measure for individual stock. The following code estimates the liquidity for IBM. First, we download the IBM and S&P500 daily price data, estimate their daily returns, and merge them as follows:

import numpy as np 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np 
import pandas as pd 
import statsmodels...