Book Image

Python Machine Learning, Second Edition - Second Edition

By : Sebastian Raschka, Vahid Mirjalili
Book Image

Python Machine Learning, Second Edition - Second Edition

By: Sebastian Raschka, Vahid Mirjalili

Overview of this book

Publisher's Note: This edition from 2017 is outdated and is not compatible with TensorFlow 2 or any of the most recent updates to Python libraries. A new third edition, updated for 2020 and featuring TensorFlow 2 and the latest in scikit-learn, reinforcement learning, and GANs, has now been published. Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka’s bestselling book, Python Machine Learning. Using Python's open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis. Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow 1.x deep learning library. The scikit-learn code has also been fully updated to v0.18.1 to include improvements and additions to this versatile machine learning library. Sebastian Raschka and Vahid Mirjalili’s unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you’ll be ready to meet the new data analysis opportunities. If you’ve read the first edition of this book, you’ll be delighted to find a balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You’ll be able to learn and work with TensorFlow 1.x more deeply than ever before, and get essential coverage of the Keras neural network library, along with updates to scikit-learn 0.18.1.
Table of Contents (24 chapters)
Python Machine Learning Second Edition
About the Authors
About the Reviewers
Packt is Searching for Authors Like You

Chapter 3. A Tour of Machine Learning Classifiers Using scikit-learn

In this chapter, we will take a tour through a selection of popular and powerful machine learning algorithms that are commonly used in academia as well as in industry. While learning about the differences between several supervised learning algorithms for classification, we will also develop an intuitive appreciation of their individual strengths and weaknesses. In addition, we will take our first step with the scikit-learn library, which offers a user-friendly interface for using those algorithms efficiently and productively.

The topics that we will learn about throughout this chapter are as follows:

  • Introduction to robust and popular algorithms for classification, such as logistic regression, support vector machines, and decision trees

  • Examples and explanations using the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API

  • Discussions about the...