Book Image

Learning Data Mining with Python - Second Edition

By : Robert Layton
Book Image

Learning Data Mining with Python - Second Edition

By: Robert Layton

Overview of this book

This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations.
Table of Contents (20 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Summary


In this chapter, we looked at using deep neural networks, specifically convolution networks, in order to perform computer vision. We did this through the Keras package, which uses Tensorflow or Theano as its computation backend. The networks were relatively easy to build with Kera's helper functions.

The convolution networks were designed for computer vision, so it shouldn't be a surprise that the result was quite accurate. The final result shows that computer vision is indeed an effective application using today's algorithms and computational power.

We also used a GPU-enabled virtual machine to drastically speed up the process, by a factor of almost 10 for my machine. If you need extra power to run some of these algorithms, virtual machines by cloud providers can be an effective way to do this (usually for less than a dollar per hour)—just remember to turn them off when you are done!

To extend the work in this chapter, try play with the structure of the network to increase the accuracy...