Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learning Data Mining with Python
  • Table Of Contents Toc
Learning Data Mining with Python

Learning Data Mining with Python - Second Edition

By : Robert Layton
close
close
Learning Data Mining with Python

Learning Data Mining with Python

By: Robert Layton

Overview of this book

This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations.
Table of Contents (14 chapters)
close
close

Using function words


One of the earliest types of features, and one that still works quite well for authorship analysis, is to use function words in a bag-of-words model. Function words are words that have little meaning on their own, but are required for creating (English!) sentences. For example, the words this and which are words that are really only defined by what they do within a sentence, rather than their meaning in themselves. Contrast this with a content word such as tiger, which has an explicit meaning and invokes imagery of a large cat when used in a sentence.

The set of words that are considered function words is not always obvious. A good rule of thumb is to choose the most frequent words in usage (over all possible documents, not just ones from the same author).

Note

Typically, the more frequently a word is used, the better it is for authorship analysis. In contrast, the less frequently a word is used, the better it is for content-based text mining, such as in the next chapter...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learning Data Mining with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon