Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learning Social Media Analytics with R
  • Table Of Contents Toc
  • Feedback & Rating feedback
Learning Social Media Analytics with R

Learning Social Media Analytics with R

By : Sarkar, Karthik Ganapathy, Raghav Bali, Sharma
5 (4)
close
close
Learning Social Media Analytics with R

Learning Social Media Analytics with R

5 (4)
By: Sarkar, Karthik Ganapathy, Raghav Bali, Sharma

Overview of this book

The Internet has truly become humongous, especially with the rise of various forms of social media in the last decade, which give users a platform to express themselves and also communicate and collaborate with each other. This book will help the reader to understand the current social media landscape and to learn how analytics can be leveraged to derive insights from it. This data can be analyzed to gain valuable insights into the behavior and engagement of users, organizations, businesses, and brands. It will help readers frame business problems and solve them using social data. The book will also cover several practical real-world use cases on social media using R and its advanced packages to utilize data science methodologies such as sentiment analysis, topic modeling, text summarization, recommendation systems, social network analysis, classification, and clustering. This will enable readers to learn different hands-on approaches to obtain data from diverse social media sources such as Twitter and Facebook. It will also show readers how to establish detailed workflows to process, visualize, and analyze data to transform social data into actionable insights.
Table of Contents (10 chapters)
close
close
9
Index

Data Science and StackExchange

Data science is not just an industry buzzword but an actual field of study which encompasses a whole lot of academic research and industry level application of these concepts. The https://datascience.stackexchange.com/ is one of those sites where users from different backgrounds and levels of expertise ask questions and discuss a whole lot of interesting concepts and things related to the field of data science, machine learning, advanced analytics, and so on.

As part of this use case, we will be making use of the Posts.xml file primarily from the said site for the analysis and uncovering of insights. Introduced in the previous section, we will utilize the same utility to load the XML and perform a couple of pre-processing steps, such as date-time cleanup to get our dataset in useable form. The following snippet performs the cleanup as well as brings the Tags attribute into useable form:

PostsDF <- loadXMLToDataFrame(paste0(path,"Posts.xml"))

#...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learning Social Media Analytics with R
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon