Book Image

Deep Learning with Keras

By : Antonio Gulli, Sujit Pal
Book Image

Deep Learning with Keras

By: Antonio Gulli, Sujit Pal

Overview of this book

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
Table of Contents (16 chapters)
Title Page
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Summary


In this chapter, you learned the basics of neural networks, more specifically, what a perceptron is, what a multilayer perceptron is, how to define neural networks in Keras, how to progressively improve metrics once a good baseline is established, and how to fine-tune the hyperparameter's space. In addition to that, you now also have an intuitive idea of what some useful activation functions (sigmoid and ReLU) are, and how to train a network with backpropagation algorithms based on either gradient descent, on stochastic gradient descent, or on more sophisticated approaches, such as Adam and RMSprop.

In the next chapter, we will see how to install Keras on AWS, Microsoft Azure, Google Cloud, and on your own machine. In addition to that, we will provide an overview of Keras APIs.