Book Image

Deep Learning with Keras

By : Antonio Gulli, Sujit Pal
Book Image

Deep Learning with Keras

By: Antonio Gulli, Sujit Pal

Overview of this book

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
Table of Contents (16 chapters)
Title Page
About the Authors
About the Reviewer
Customer Feedback

Installing Keras

In the sections to follow, we will show how to install Keras on multiple platforms.

Step 1 — install some useful dependencies

First, we install the numpy package, which provides support for large, multidimensional arrays and matrices as well as high-level mathematical functions. Then we install scipy, a library used for scientific computation. After that, it might be appropriate to install scikit-learn, a package considered the Python Swiss army knife for machine learning. In this case, we will use it for data exploration. Optionally, it could be useful to install pillow, a library useful for image processing, and h5py, a library useful for data serialization used by Keras for model saving. A single command line is enough for installing what is needed. Alternatively, one can install Anaconda Python, which will automatically install numpy, scipy, scikit-learn, h5py, pillow, and a lot of other libraries that are needed for scientific computing (for more information, refer to...