Book Image

Deep Learning with Keras

By : Antonio Gulli, Sujit Pal
Book Image

Deep Learning with Keras

By: Antonio Gulli, Sujit Pal

Overview of this book

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
Table of Contents (16 chapters)
Title Page
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Summary


In this chapter, we discussed how to install Theano, TensorFlow, and Keras on the following:

  • Your local machine
  • A dockerized infrastructure based on containers
  • In the cloud with Google GCP, Amazon AWS, and Microsoft Azure

In addition to that, we looked at a few modules defining Keras APIs and some commonly useful operations such as loading and saving neural networks' architectures and weights, early stopping, history saving, checkpointing, interactions with TensorBoard, and interactions with Quiver.

In the next chapter, we will introduce the concept of convolutional networks a fundamental innovation in deep learning which has been used with success in multiple domains from text, to video, to speech going well beyond the initial image processing domain where they were originally conceived.