Book Image

Deep Learning with Keras

By : Antonio Gulli, Sujit Pal
Book Image

Deep Learning with Keras

By: Antonio Gulli, Sujit Pal

Overview of this book

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
Table of Contents (16 chapters)
Title Page
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Stateful RNNs


RNNs can be stateful, which means that they can maintain state across batches during training. That is, the hidden state computed for a batch of training data will be used as the initial hidden state for the next batch of training data. However, this needs to be explicitly set, since Keras RNNs are stateless by default and resets the state after each batch. Setting an RNN to be stateful means that it can build a state across its training sequence and even maintain that state when doing predictions.

The benefits of using stateful RNNs are smaller network sizes and/or lower training times. The disadvantage is that we are now responsible for training the network with a batch size that reflects the periodicity of the data, and resetting the state after each epoch. In addition, data should not be shuffled while training the network, since the order in which the data is presented is relevant for stateful networks.

Stateful LSTM with Keras — predicting electricity consumption

In this...