Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Learning with Keras
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Learning with Keras

Deep Learning with Keras

By : Antonio Gulli , Sujit Pal
3.5 (20)
close
close
Deep Learning with Keras

Deep Learning with Keras

3.5 (20)
By: Antonio Gulli , Sujit Pal

Overview of this book

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
Table of Contents (10 chapters)
close
close

What this book covers

Chapter 1, Neural Networks Foundations, teaches the basics of neural networks.

Chapter 2, Keras Installation and API, shows how to install Keras on AWS, Microsoft Azure, Google Cloud, and your own machine. In addition to that, we provide an overview of the Keras APIs.

Chapter 3, Deep Learning with ConvNets, introduces the concept of convolutional networks. It is a fundamental innovation in deep learning that has been used with success in multiple domains, from text to video to speech, going well beyond the initial image processing domain where it was originally conceived.

Chapter 4, Generative Adversarial Networks and WaveNet, introduces generative adversarial networks used to reproduce synthetic data that looks like data generated by humans. And we will present WaveNet, a deep neural network used for reproducing human voice and musical instruments with high quality.

Chapter 5, Word Embeddings, discusses word embeddings, a set of deep learning methodologies for detecting relationships between words and grouping together similar words.

Chapter 6, Recurrent Neural Networks – RNN, covers recurrent neural networks, a class of network optimized for handling sequence data such as text.

Chapter 7, Additional Deep Learning Models, gives a brief look into the Keras functional API, regression networks, autoencoders, and so on.

Chapter 8, AI Game Playing, teaches you deep reinforcement learning and how it can be used to build deep learning networks with Keras that learn how to play arcade games based on reward feedback.

Appendix, Conclusion, is a crisp refresher of the topics covered in this book and walks the users through what is new in Keras 2.0.

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Deep Learning with Keras
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon