Book Image

Hands-On Deep Learning with TensorFlow

By : Dan Van Boxel
Book Image

Hands-On Deep Learning with TensorFlow

By: Dan Van Boxel

Overview of this book

Dan Van Boxel’s Deep Learning with TensorFlow is based on Dan’s best-selling TensorFlow video course. With deep learning going mainstream, making sense of data and getting accurate results using deep networks is possible. Dan Van Boxel will be your guide to exploring the possibilities with deep learning; he will enable you to understand data like never before. With the efficiency and simplicity of TensorFlow, you will be able to process your data and gain insights that will change how you look at data. With Dan’s guidance, you will dig deeper into the hidden layers of abstraction using raw data. Dan then shows you various complex algorithms for deep learning and various examples that use these deep neural networks. You will also learn how to train your machine to craft new features to make sense of deeper layers of data. In this book, Dan shares his knowledge across topics such as logistic regression, convolutional neural networks, recurrent neural networks, training deep networks, and high level interfaces. With the help of novel practical examples, you will become an ace at advanced multilayer networks, image recognition, and beyond.
Table of Contents (12 chapters)

Research evaluation


In this section, we'll compare our models in the font classification problem. First, we should remind ourselves what the data looks like. Then, we'll inspect the simple logistic dense neural network and convolutional neural network models. You've come a long way in modeling with TensorFlow.

Before we move on from deep learning, however, let's look back and see how models compare on the font classification problem. First, let's look at the data again, so we don't lose sight of the problem. In fact, let's look at one image that includes all the letters and digits from every font, just to see what shapes we have:

# One look at a letter/digit from each font
# Best to reshape as one large array, then plot
all_letters = np.zeros([5*36,62*36])
for font in range(5):
    for letter in range(62):
        all_letters[font*36:(font+1)*36,
                letter*36:(letter+1)*36] = \
                train[9*(font*62 + letter)]

This would be a lot of subplots for Matplotlib to handle...