Book Image

Feature Engineering Made Easy

By : Sinan Ozdemir, Divya Susarla
Book Image

Feature Engineering Made Easy

By: Sinan Ozdemir, Divya Susarla

Overview of this book

Feature engineering is the most important step in creating powerful machine learning systems. This book will take you through the entire feature-engineering journey to make your machine learning much more systematic and effective. You will start with understanding your data—often the success of your ML models depends on how you leverage different feature types, such as continuous, categorical, and more, You will learn when to include a feature, when to omit it, and why, all by understanding error analysis and the acceptability of your models. You will learn to convert a problem statement into useful new features. You will learn to deliver features driven by business needs as well as mathematical insights. You'll also learn how to use machine learning on your machines, automatically learning amazing features for your data. By the end of the book, you will become proficient in Feature Selection, Feature Learning, and Feature Optimization.
Table of Contents (14 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface

Chapter 3. Feature Improvement - Cleaning Datasets

In the last two chapters, we have gone from talking about a basic understanding of feature engineering and how it can be used to enhance our machine learning pipelines to getting our hands dirty with datasets and evaluating and understanding the different types of data that we can encounter in the wild.

In this chapter, we will be using what we learned and taking things a step further and begin to change the datasets that we work with. Specifically, we will be starting to clean and augment our datasets. By cleaning, we will generally be referring to the process of altering columns and rows already given to us. By augmenting, we will generally refer to the processes of removing columns and adding columns to datasets. As always, our goal in all of these processes is to enhance our machine learning pipelines.

In the following chapters, we will be:

  • Identifying missing values in data
  • Removing harmful data
  • Imputing (filling in) these missing values...