Book Image

Deep Learning for Computer Vision

By : Rajalingappaa Shanmugamani
Book Image

Deep Learning for Computer Vision

By: Rajalingappaa Shanmugamani

Overview of this book

Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation.
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell
Foreword
Contributors
Preface

Chapter 3. Image Retrieval

Deep learning can also be called representation learning because the features or representations in the model are learned during training. The visual features generated during the training process in the hidden layers can be used for computing a distance metric. These models learn how to detect edges, patterns, and so on at various layers, depending on the classification task. In this chapter, we will look at the following:

  • How to extract features from a model that was trained for classification
  • How to use TensorFlow Serving for faster inference in production systems
  • How to compute similarity between a query image and the set of targets using those features
  • Using the classification model for ranking
  • How to increase the speed of the retrieval system
  • Looking at the architecture of the system as a whole
  • Learning a compact descriptor when the target images are too many, using autoencoder
  • Training a denoising autoencoder