Book Image

Machine Learning with R - Third Edition

By : Brett Lantz
Book Image

Machine Learning with R - Third Edition

By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R.
Table of Contents (18 chapters)
Machine Learning with R - Third Edition
Other Books You May Enjoy
Leave a review - let other readers know what you think


It is certainly an exciting time to be studying machine learning. Ongoing work on the relatively uncharted frontiers of parallel and distributed computing offers great potential for tapping the knowledge found in the deluge of big data. And the burgeoning data science community is facilitated by the free and open-source R programming language, which provides a very low barrier for entry—you simply need to be willing to learn.

The topics you have learned, both in this chapter as well as previous chapters, provide the foundation for understanding more advanced machine learning methods. It is now your responsibility to keep learning and adding tools to your arsenal. Along the way, be sure to keep in mind the no free lunch theorem—no learning algorithm rules them all, and they all have varying strengths and weaknesses. For this reason, there will always be a human element to machine learning, adding subject-specific knowledge and the ability to match the appropriate algorithm to the task...