Book Image

Machine Learning with R - Third Edition

By : Brett Lantz
Book Image

Machine Learning with R - Third Edition

By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R.
Table of Contents (18 chapters)
Machine Learning with R - Third Edition
Other Books You May Enjoy
Leave a review - let other readers know what you think

Chapter 2. Managing and Understanding Data

A key early component of any machine learning project involves managing and understanding data. Although this may not be as gratifying as building and deploying models—the stages in which you begin to see the fruits of your labor—it is unwise to ignore this important preparatory work.

Any learning algorithm is only as good as its input data, and in many cases, the input data is complex, messy, and spread across multiple sources and formats. Due to this complexity, often the largest portion of effort invested in machine learning projects is spent on data preparation and exploration.

This chapter approaches data preparation in three ways. The first section discusses the basic data structures R uses to store data. You will become very familiar with these structures as you create and manipulate datasets. The second section is practical, as it covers several functions that are used for getting data in and out of R. In the third section, methods for understanding...