Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning with R
  • Table Of Contents Toc
Machine Learning with R

Machine Learning with R - Third Edition

By : Brett Lantz
4.2 (46)
close
close
Machine Learning with R

Machine Learning with R

4.2 (46)
By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R.
Table of Contents (16 chapters)
close
close
13
Other Books You May Enjoy
14
Leave a review - let other readers know what you think
15
Index

Understanding clustering


Clustering is an unsupervised machine learning task that automatically divides the data into clusters, or groups of similar items. It does this without having been told how the groups should look ahead of time. As we may not even know what we're looking for, clustering is used for knowledge discovery rather than prediction. It provides an insight into the natural groupings found within data.

Without advanced knowledge of what comprises a cluster, how can a computer possibly know where one group ends and another begins? The answer is simple: clustering is guided by the principle that items inside a cluster should be very similar to each other, but very different from those outside. The definition of similarity might vary across applications, but the basic idea is always the same: group the data such that related elements are placed together.

The resulting clusters can then be used for action. For instance, you might find clustering methods employed in applications such...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Machine Learning with R
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon