Book Image

Hands-On Machine Learning on Google Cloud Platform

By : Giuseppe Ciaburro, V Kishore Ayyadevara, Alexis Perrier
Book Image

Hands-On Machine Learning on Google Cloud Platform

By: Giuseppe Ciaburro, V Kishore Ayyadevara, Alexis Perrier

Overview of this book

Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems.
Table of Contents (18 chapters)
8
Creating ML Applications with Firebase

To get the most out of this book

In this book, machine learning algorithms are implemented on the Google Cloud Platform. To reproduce the many examples in this book, you need to possess a working account on GCP. We have used Python 2.7 and above to build various applications. In that spirit, we have tried to keep all of the code as friendly and readable as possible. We feel that this will enable our readers to easily understand the code and readily use it in different scenarios.

Download the example code files

You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

  1. Log in or register at www.packtpub.com.
  2. Select the SUPPORT tab.
  3. Click on Code Downloads & Errata.
  4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR/7-Zip for Windows
  • Zipeg/iZip/UnRarX for Mac
  • 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-On-Machine-Learning-on-Google-Cloud-Platform. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Where GROUP is a service or an account element and COMMAND is the command to send to the GROUP."

A block of code is set as follows:

import matplotlib.patches as patches
import numpy as np
fig,ax = plt.subplots(1)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

text="this is a good text"
from google.cloud.language_v1 import types
document = types.Document(
content=text,
type='PLAIN_TEXT')

Any command-line input or output is written as follows:

$ gcloud compute instances list

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Click on Create a new project."

Warnings or important notes appear like this.
Tips and tricks appear like this.