Book Image

Data Analysis with R, Second Edition - Second Edition

Book Image

Data Analysis with R, Second Edition - Second Edition

Overview of this book

Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. Starting with the basics of R and statistical reasoning, this book dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax with packages like Rcpp, ggplot2, and dplyr. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with messy data, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone’s career as a data analyst.
Table of Contents (24 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Frequency distributions


A common way of describing univariate data is with a frequency distribution. We've already seen an example of a frequency distribution when we looked at the preferences for soy ice cream at the end of the last chapter. For each flavor of ice cream (categorical variable), it depicted the count or frequency of the occurrences in the underlying dataset.

To demonstrate examples of other frequency distributions, we need to find some data. Fortunately, for the convenience of useRs everywhere, R comes preloaded with almost one hundred datasets. You can view a full list if you execute help (package="datasets"). There are also hundreds more available from add-on packages.

The first dataset that we are going to use is mtcars--data on the design and performance of 32 automobiles, which was extracted from the 1974 Motor Trend US magazine. (To find out more information about this dataset, execute ?mtcars).

Take a look at the first few lines of this dataset using the head function...