Book Image

Natural Language Processing with TensorFlow

By : Motaz Saad, Thushan Ganegedara
Book Image

Natural Language Processing with TensorFlow

By: Motaz Saad, Thushan Ganegedara

Overview of this book

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Table of Contents (16 chapters)
Natural Language Processing with TensorFlow

Inputs, variables, outputs, and operations

Now with an understanding of the underlying architecture let's proceed to the most common elements that comprise a TensorFlow client. If you read any of the millions of TensorFlow clients available on the internet, they all (the TensorFlow-related code) fall into one of these buckets:

  • Inputs: Data used to train and test our algorithms

  • Variables: Mutable tensors, mostly defining the parameters of our algorithms

  • Outputs: Immutable tensors storing both terminal and intermediate outputs

  • Operations: Various transformations for inputs to produce the desired outputs

In our earlier example, in the sigmoid example, we can find instances of all these categories. We list the elements in Table 2.1:

TensorFlow element

Value from example client




W and b




tf.matmul(...), tf.nn.sigmoid(...)

The following subsections explain each of these TensorFlow elements in more detail.

Defining inputs in TensorFlow

The client...