Book Image

Natural Language Processing with TensorFlow

By : Motaz Saad, Thushan Ganegedara
Book Image

Natural Language Processing with TensorFlow

By: Motaz Saad, Thushan Ganegedara

Overview of this book

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Table of Contents (16 chapters)
Natural Language Processing with TensorFlow
Contributors
Preface
Index

Summary


In this chapter, you took your first steps to solving NLP tasks by understanding the primary underlying platform (TensorFlow) on which we will be implementing our algorithms. First, we discussed the underlying details of TensorFlow architecture. Next, we discussed the essential ingredients of a meaningful TensorFlow client. Then we discussed a general coding practice widely used in TensorFlow known as scoping. Later, we brought all these elements together to implement a neural network to classify an MNIST dataset.

Specifically, we discussed the TensorFlow architecture lining up the explanation with an example TensorFlow client. In the TensorFlow client, we defined the TensorFlow graph. Then, when we created a session, it looked at the graph, created a GraphDef object representing the graph, and sent it to the distributed master. The distributed master looked at the graph, decided which components to use for the relevant computation, and divided it into several subgraphs to make the...