Book Image

Natural Language Processing with TensorFlow

By : Motaz Saad, Thushan Ganegedara
Book Image

Natural Language Processing with TensorFlow

By: Motaz Saad, Thushan Ganegedara

Overview of this book

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Table of Contents (16 chapters)
Natural Language Processing with TensorFlow


Word embeddings have become an integral part of many NLP tasks and are widely used for tasks such as machine translation, chatbots, image caption generation, and language modeling. Not only do word embeddings act as a dimensionality reduction technique (compared to one-hot encoding) but they also give a richer feature representation than other existing techniques. In this chapter, we discussed two popular neural network-based methods for learning word representations, namely the skip-gram model and the CBOW model.

First, we discussed the classical approaches to develop an understanding about how word representations were learned in the past. We discussed various methods such as using WordNet, building a co-occurrence matrix of the words, and calculating TF-IDF. Later, we discussed the limitations of these approaches.

This motivated us to explore neural network-based word representation learning methods. First, we worked out an example by hand to understand how word embeddings or word...