Book Image

Natural Language Processing with TensorFlow

By : Motaz Saad, Thushan Ganegedara
Book Image

Natural Language Processing with TensorFlow

By: Motaz Saad, Thushan Ganegedara

Overview of this book

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Table of Contents (16 chapters)
Natural Language Processing with TensorFlow
Contributors
Preface
Index

Summary


In this chapter, we looked at RNNs, which are different from conventional feed-forward neural networks and more powerful in terms of solving temporal tasks. Furthermore, RNNs can manifest in many different forms: one-to-one (text generation), many-to-one (sequential image classification), one-to-many (image captioning), and many-to-many (machine translation).

Specifically, we discussed how to arrive at an RNN from a feed-forward neural networks type structure. We assumed a sequence of inputs and outputs, and designed a computational graph that can represent the sequence of inputs and outputs. This computational graph resulted in a series of copies of functions that we applied to each individual input-output tuple in the sequence. Then, by generalizing this model to any given single time step t in the sequence, we were able to arrive at the basic computational graph of an RNN. We discussed the exact equations and update rules used to calculate the hidden state and the output.

Next we...