Book Image

Natural Language Processing with TensorFlow

By : Motaz Saad, Thushan Ganegedara
Book Image

Natural Language Processing with TensorFlow

By: Motaz Saad, Thushan Ganegedara

Overview of this book

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Table of Contents (16 chapters)
Natural Language Processing with TensorFlow
Contributors
Preface
Index

Summary


In this chapter, we focused on a very interesting task that involves generating captions for given images. Our learning model was a complex machine learning pipeline, which included the following:

  • Inferring feature vectors for a given image using a CNN

  • Learning word embeddings for the words found in the captions

  • Training an LSTM with the image feature vectors and their corresponding captions

We discussed each component in detail. First, we talked about how we can use a pretrained CNN model on a large classification dataset (that is, ImageNet) to extract good feature vectors without training a model from scratch. For this, we used a VGG with 16 layers. Next we discussed step by step how we can create TensorFlow variables, load the weights into them, and create the network. Finally, we ran a few of the test images through the model to make sure the model is actually capable of recognizing objects in the image.

Then we used the CBOW algorithm to learn good word embeddings of the words found...