Book Image

Mastering Hadoop 3

By : Chanchal Singh, Manish Kumar
Book Image

Mastering Hadoop 3

By: Chanchal Singh, Manish Kumar

Overview of this book

Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency. With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals. By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines.
Table of Contents (23 chapters)
Title Page
Dedication
About Packt
Foreword
Contributors
Preface
Index

Chapter 1. Journey to Hadoop 3

Hadoop has come a long way since its inception. Powered by a community of open source enthusiasts, it has seen three major version releases. The version 1 release saw the light of day six years after the first release of Hadoop. With this release, the Hadoop platform had full capabilities that can run MapReduce-distributed computing on Hadoop Distributed File System (HDFS) distributed storage. It had some of the most major performance improvements ever done, along with full support for security. This release also enjoyed a lot of improvements with respect to HBASE.

The version 2 release made significant leaps compared to version 1 of Hadoop. It introduced YARN, a sophisticated general-purpose resource manager and job scheduling component. HDFS high availability, HDFS federations, and HDFS snapshots were some other prominent features introduced in version 2 releases.

The latest major release of Hadoop is version 3. This version has seen some significant features such as HDFS erasure encoding, a new YARN Timeline service (with new architecture), YARN opportunistic containers and distributed scheduling, support for three name nodes, and intra-data-node load balancers. Apart from major feature additions, version 3 has performance improvements and bug fixes. As this book is about mastering Hadoop 3, we'll mostly talk about this version.

In this chapter, we will take a look at Hadoop's history and how the Hadoop evolution timeline looks. We will look at the features of Hadoop 3 and get a logical view of the Hadoop ecosystem along with different Hadoop distributions. 

In particular, we will cover the following topics:

  • Hadoop origins
  • Hadoop Timelines
  • Hadoop logical view
  • Moving towards Hadoop 3
  • Hadoop distributions