Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Manifold learning


In Chapter 02, Introduction to Semi-Supervised Learning, we discussed the manifold assumption, saying that high-dimensional data normally lies on low-dimensional manifolds. Of course, this is not a theorem, but in many real cases, the assumption is proven to be correct, and it allows us to work with non-linear dimensionality reduction algorithms that would be otherwise unacceptable. In this section, we're going to analyze some of these algorithms. They are all implemented in Scikit-Learn, therefore it's easy to try them with complex datasets.

Isomap

Isomap is one of the simplest algorithms, and it's based on the idea of reducing the dimensionality while trying to preserve the geodesic distances measured on the original manifold where the input data lies. The algorithm works in three steps. The first operation is a k-nearest neighbors clustering and the construction of the following graph. The vertices will be the samples, while the edges represent the connections among nearest...