Book Image

Keras Deep Learning Cookbook

By : Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
Book Image

Keras Deep Learning Cookbook

By: Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra

Overview of this book

Keras has quickly emerged as a popular deep learning library. Written in Python, it allows you to train convolutional as well as recurrent neural networks with speed and accuracy. The Keras Deep Learning Cookbook shows you how to tackle different problems encountered while training efficient deep learning models, with the help of the popular Keras library. Starting with installing and setting up Keras, the book demonstrates how you can perform deep learning with Keras in the TensorFlow. From loading data to fitting and evaluating your model for optimal performance, you will work through a step-by-step process to tackle every possible problem faced while training deep models. You will implement convolutional and recurrent neural networks, adversarial networks, and more with the help of this handy guide. In addition to this, you will learn how to train these models for real-world image and language processing tasks. By the end of this book, you will have a practical, hands-on understanding of how you can leverage the power of Python and Keras to perform effective deep learning
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell

Shared layer models

Multiple layers in Keras can share the output from one layer. There can be multiple different feature extraction layers from an input, or multiple layers can be used to predict the output from a feature extraction layer.

Let's look at both of these examples.

Introduction – shared input layer

In this section, we show how multiple convolutional layers with differently sized kernels interpret an image input. The model takes colored CIFAR images with a size of 32 x 32 x 3 pixels. There are two CNN feature extraction submodels that share this input; the first has a kernel size of 4, the second a kernel size of 8. The outputs from these feature extraction sub-models are flattened into vectors and concatenated into one long vector, and this is passed on to a fully connected layer for interpretation before a final output layer makes a binary classification.

This is the model topology:

  • One input layer
  • Two feature extraction layers
  • One interpretation layer
  • One dense output layer

How to...