Book Image

Keras Deep Learning Cookbook

By : Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
Book Image

Keras Deep Learning Cookbook

By: Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra

Overview of this book

Keras has quickly emerged as a popular deep learning library. Written in Python, it allows you to train convolutional as well as recurrent neural networks with speed and accuracy. The Keras Deep Learning Cookbook shows you how to tackle different problems encountered while training efficient deep learning models, with the help of the popular Keras library. Starting with installing and setting up Keras, the book demonstrates how you can perform deep learning with Keras in the TensorFlow. From loading data to fitting and evaluating your model for optimal performance, you will work through a step-by-step process to tackle every possible problem faced while training deep models. You will implement convolutional and recurrent neural networks, adversarial networks, and more with the help of this handy guide. In addition to this, you will learn how to train these models for real-world image and language processing tasks. By the end of this book, you will have a practical, hands-on understanding of how you can leverage the power of Python and Keras to perform effective deep learning
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell

Appendix 1. Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Deep Learning with Keras Antonio Gulli, Sujit Pal

ISBN: 9781787128422

  • Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm
  • Fine-tune a neural network to improve the quality of results
  • Use deep learning for image and audio processing
  • Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases
  • Identify problems for which Recurrent Neural Network (RNN) solutions are suitable
  • Explore the process required to implement Autoencoders
  • Evolve a deep neural network using reinforcement learning

Keras Reinforcement Learning Projects Giuseppe Ciaburro

ISBN: 9781789342093

  • Practice the Markov decision process in prediction and betting evaluations
  • Implement Monte Carlo methods to forecast environment behaviors
  • Explore TD learning algorithms to manage warehouse operations
  • Construct a Deep Q-Network using Python and Keras to control robot movements
  • Apply reinforcement concepts to build a handwritten digit recognition model using an image dataset
  • Address a game theory problem using Q-Learning and OpenAI Gym