Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying R Data Analysis Projects
  • Table Of Contents Toc
R Data Analysis Projects

R Data Analysis Projects

By : Gopi Subramanian
5 (2)
close
close
R Data Analysis Projects

R Data Analysis Projects

5 (2)
By: Gopi Subramanian

Overview of this book

R offers a large variety of packages and libraries for fast and accurate data analysis and visualization. As a result, it’s one of the most popularly used languages by data scientists and analysts, or anyone who wants to perform data analysis. This book will demonstrate how you can put to use your existing knowledge of data analysis in R to build highly efficient, end-to-end data analysis pipelines without any hassle. You’ll start by building a content-based recommendation system, followed by building a project on sentiment analysis with tweets. You’ll implement time-series modeling for anomaly detection, and understand cluster analysis of streaming data. You’ll work through projects on performing efficient market data research, building recommendation systems, and analyzing networks accurately, all provided with easy to follow codes. With the help of these real-world projects, you’ll get a better understanding of the challenges faced when building data analysis pipelines, and see how you can overcome them without compromising on the efficiency or accuracy of your systems. The book covers some popularly used R packages such as dplyr, ggplot2, RShiny, and others, and includes tips on using them effectively. By the end of this book, you’ll have a better understanding of data analysis with R, and be able to put your knowledge to practical use without any hassle.
Table of Contents (9 chapters)
close
close

Graphs in R


We will use the R package, igraph, for our graph analysis needs. We will leverage the arules package to manipulate our data. If you don't have them installed, proceed to install them as follows:

>  install.packages("arules")
>  install.packages("igraph")

You can use the sessionInfo function from the utils package to look at the packages available for you in the current session.

Let's get started; create a simple graph, and plot it:

> library(igraph, quietly = TRUE)
> simple.graph <- graph_from_literal(A-B, B-C, C-D, E-F, A-E, E-C)
> plot.igraph(simple.graph)

This produces the following graph plot:

After including the igraph library, we used the graph_from_literal function to create a simple undirected graph with six nodes. The igraph package provides the plot.igraph function to visualize the graphs. There are several ways in which we can create a graph. For a complete list of the different methods available to create graphs, refer to http://igraph.org/r/#docs.

Alternatively...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
R Data Analysis Projects
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon