Book Image

Building Machine Learning Systems with Python - Third Edition

By : Luis Pedro Coelho, Willi Richert, Matthieu Brucher
Book Image

Building Machine Learning Systems with Python - Third Edition

By: Luis Pedro Coelho, Willi Richert, Matthieu Brucher

Overview of this book

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
Table of Contents (17 chapters)
Free Chapter
1
Getting Started with Python Machine Learning

Classification III – Music Genre Classification

So far, we have been lucky that every training data instance could easily be described by a vector of feature values. In the Iris dataset, for example, the flowers are represented by vectors containing values for the length and width of certain aspects of a flower. In the text-based examples, we could transform the text into bag-of-word representations and manually craft our own features that captured certain aspects of the texts.

It will be different in this chapter, when we try to classify songs by their genre. How would we, for instance, represent a three minute-long song? Should we take the individual bits of its MP3 representation? Probably not, since treating it like text and creating something like a bag of sound bites would certainly be way too complex. Somehow, we will have to convert a song into a vector of values...