Book Image

Building Machine Learning Systems with Python - Third Edition

By : Luis Pedro Coelho, Willi Richert, Matthieu Brucher
Book Image

Building Machine Learning Systems with Python - Third Edition

By: Luis Pedro Coelho, Willi Richert, Matthieu Brucher

Overview of this book

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
Table of Contents (17 chapters)
Free Chapter
1
Getting Started with Python Machine Learning

Fetching the Twitter data

Naturally, we need tweets and their corresponding labels that describe sentiments. In this chapter, we will use the corpus from Niek Sanders, who has done an awesome job of manually labeling more than 5,000 tweets as positive, negative, or neutral and has granted us permission to use it in this chapter.

To comply with Twitter terms of services, we will not provide any data from Twitter nor show any real tweets in this chapter. Instead, we can use Sander's hand-labeled data, which contains the tweet IDs and their hand-labeled sentiments. We will use Twitter's API to fetch the corresponding tweets one by one. To not bore you too much, just execute the first part of the corresponding Jupyter notebook, which will start the downloading process. In order to play nicely with Twitter's servers, it will take quite some time to download all the data...