Book Image

Hands-On Markov Models with Python

By : Ankur Ankan, Abinash Panda
Book Image

Hands-On Markov Models with Python

By: Ankur Ankan, Abinash Panda

Overview of this book

Hidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone. Once you’ve covered the basic concepts of Markov chains, you’ll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you’ll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you’ll explore the Bayesian approach of inference and learn how to apply it in HMMs. In further chapters, you’ll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You’ll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you’ll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading. By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects.
Table of Contents (11 chapters)

Stock price prediction using HMM

Stock market prediction has been one of the more active research areas in the past, given the obvious interest of a lot of major companies. Historically, various machine learning algorithms have been applied with varying degrees of success. However, stock forecasting is still severely limited due to its non-stationary, seasonal, and unpredictable nature. Predicting forecasts from just the previous stock data is an even more challenging task since it ignores several outlying factors.

As seen previously, HMMs are capable of modeling hidden state transitions from the sequential observed data. The problem of stock prediction can also be thought as following the same pattern. The price of the stock depends upon a multitude of factors which generally remain invisible to the investor (hidden variables). The transition between the underlaying factors change...