Book Image

Big Data Analytics with Hadoop 3

By : Sridhar Alla
Book Image

Big Data Analytics with Hadoop 3

By: Sridhar Alla

Overview of this book

Apache Hadoop is the most popular platform for big data processing, and can be combined with a host of other big data tools to build powerful analytics solutions. Big Data Analytics with Hadoop 3 shows you how to do just that, by providing insights into the software as well as its benefits with the help of practical examples. Once you have taken a tour of Hadoop 3’s latest features, you will get an overview of HDFS, MapReduce, and YARN, and how they enable faster, more efficient big data processing. You will then move on to learning how to integrate Hadoop with the open source tools, such as Python and R, to analyze and visualize data and perform statistical computing on big data. As you get acquainted with all this, you will explore how to use Hadoop 3 with Apache Spark and Apache Flink for real-time data analytics and stream processing. In addition to this, you will understand how to use Hadoop to build analytics solutions on the cloud and an end-to-end pipeline to perform big data analysis using practical use cases. By the end of this book, you will be well-versed with the analytical capabilities of the Hadoop ecosystem. You will be able to build powerful solutions to perform big data analytics and get insight effortlessly.
Table of Contents (18 chapters)
Title Page
Copyright and Credits
Packt Upsell
Scientific Computing and Big Data Analysis with Python and Hadoop

Chart types

A chart can take a large variety of forms; however, there are common features that provide the chart with its ability to extract meaning from data. Typically, the data in a chart is represented graphically, since humans are generally able to infer meanings from pictures quicker than from text. Text is generally used only to annotate the data.

One of the most important uses of text in a graph is the title. A graph's title usually appears above the main graphic and provides a succinct description of what the data in the graph refers to. Dimensions in the data are often displayed on axes. If a horizontal and a vertical axis are used, they are usually referred to as the x axis and y axis respectively. Each axis will have a scale, denoted by periodic graduations and usually accompanied by numerical or categorical indications. Each axis will typically also have a label displayed outside or beside it, briefly describing the dimension represented. If the scale is numerical, the label...