Book Image

Advanced Deep Learning with Keras

By : Rowel Atienza
Book Image

Advanced Deep Learning with Keras

By: Rowel Atienza

Overview of this book

Recent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (13 chapters)
12
Index

Conclusion


In this chapter, we've been introduced to autoencoders, which are neural networks that compress input data into low-dimensional codes in order to efficiently perform structural transformations such as denoising and colorization. We've laid the foundations to the more advanced topics of GANs and VAEs, that we will introduce in later chapters, while still exploring how autoencoders can utilize Keras. We've demonstrated how to implement an autoencoder from two building block models, both encoder and decoder. We've also learned how the extraction of a hidden structure of input distribution is one of the common tasks in AI.

Once the latent code has been uncovered, there are many structural operations that can be performed on the original input distribution. In order to gain a better understanding of the input distribution, the hidden structure in the form of the latent vector can be visualized using low-level embedding similar to what we did in this chapter or through more sophisticated...