Book Image

Advanced Deep Learning with Keras

By : Rowel Atienza
Book Image

Advanced Deep Learning with Keras

By: Rowel Atienza

Overview of this book

Recent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (13 chapters)
12
Index

Auxiliary classifier GAN (ACGAN)


ACGAN is similar in principle to the Conditional GAN (CGAN) that we discussed in the previous chapter. We're going to compare both CGANand ACGAN. For both CGAN and ACGAN, the generator inputs are noise and its label. The output is a fake image belonging to the input class label. For CGAN, the inputs to the discriminator are an image (fake or real) and its label. The output is the probability that the image is real. For ACGAN, the input to the discriminator is an image, whilst the output is the probability that the image is real and its class label. Following figure highlights the difference between CGAN and ACGAN during generator training:

Figure 5.3.1: CGAN vs. ACGAN generator training. The main difference is the input and output of the discriminator.

Essentially, in CGAN we feed the network with side information (label). In ACGAN, we try to reconstruct the side information using an auxiliary class decoder network. ACGAN argued that forcing the network to...