Book Image

Advanced Deep Learning with Keras

By : Rowel Atienza
Book Image

Advanced Deep Learning with Keras

By: Rowel Atienza

Overview of this book

Recent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (13 chapters)

Principles of reinforcement learning (RL)

Figure 9.1.1 shows the perception-action-learning loop that is used to describe RL. The environment is a soda can sitting on the floor. The agent is a mobile robot whose goal is to pick up the soda can. It observes the environment around it and tracks the location of the soda can through an onboard camera. The observation is summarized in a form of state which the robot will use to decide which action to take. The actions it takes may pertain to low-level control such as the rotation angle/speed of each wheel, rotation angle/speed of each joint of the arm, and whether the gripper is open or close.

Alternatively, the actions may be high-level control moves such as moving the robot forward/backward, steering with a certain angle, and grab/release. Any action that moves the gripper away from the soda receives a negative reward. Any action that closes the gap between the gripper location and the soda receives a positive reward. When the robot...