Book Image

Hands-On Computer Vision with TensorFlow 2

By : Benjamin Planche, Eliot Andres
Book Image

Hands-On Computer Vision with TensorFlow 2

By: Benjamin Planche, Eliot Andres

Overview of this book

Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks. Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts. By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0.
Table of Contents (16 chapters)
Free Chapter
1
Section 1: TensorFlow 2 and Deep Learning Applied to Computer Vision
5
Section 2: State-of-the-Art Solutions for Classic Recognition Problems
9
Section 3: Advanced Concepts and New Frontiers of Computer Vision
14
Assessments

Summary

In this chapter, we covered several topics on performance. First, we learned how to properly measure the inference speed of a model, and then we went through techniques to reduce inference time: choosing the right hardware and the right libraries, optimizing input size, and optimizing post-processing. We covered techniques to make a slower model appear, to the user, as if it were processing in real time, and to reduce the model size.

Then, we introduced on-device ML, along with its benefits and limitations. We learned how to convert TensorFlow and Keras models to a format that's compatible with on-device deep learning frameworks. With examples on iOS and Android, and in the browser, we covered a wide range of devices. We also introduced some existing embedded devices.

Throughout this book, we have presented TensorFlow 2 in detail, applying it to multiple computer...