Book Image

Hands-On Artificial Intelligence for Banking

By : Jeffrey Ng, Subhash Shah
Book Image

Hands-On Artificial Intelligence for Banking

By: Jeffrey Ng, Subhash Shah

Overview of this book

Remodeling your outlook on banking begins with keeping up to date with the latest and most effective approaches, such as artificial intelligence (AI). Hands-On Artificial Intelligence for Banking is a practical guide that will help you advance in your career in the banking domain. The book will demonstrate AI implementation to make your banking services smoother, more cost-efficient, and accessible to clients, focusing on both the client- and server-side uses of AI. You’ll begin by understanding the importance of artificial intelligence, while also gaining insights into the recent AI revolution in the banking industry. Next, you’ll get hands-on machine learning experience, exploring how to use time series analysis and reinforcement learning to automate client procurements and banking and finance decisions. After this, you’ll progress to learning about mechanizing capital market decisions, using automated portfolio management systems and predicting the future of investment banking. In addition to this, you’ll explore concepts such as building personal wealth advisors and mass customization of client lifetime wealth. Finally, you’ll get to grips with some real-world AI considerations in the field of banking. By the end of this book, you’ll be equipped with the skills you need to navigate the finance domain by leveraging the power of AI.
Table of Contents (14 chapters)
1
Section 1: Quick Review of AI in the Finance Industry
3
Section 2: Machine Learning Algorithms and Hands-on Examples
Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Artificial Intelligence By Example - Second Edition
Denis Rothman

ISBN: 978-1-83921-153-9

  • Apply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google Translate
  • Understand chained algorithms combining unsupervised learning with decision trees
  • Solve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graph
  • Learn about meta learning models with hybrid neural networks
  • Create a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data logging
  • Building conversational user interfaces (CUI) for chatbots
  • Writing genetic algorithms that optimize deep learning...