Book Image

Learn Three.js - Third Edition

By : Jos Dirksen
1 (1)
Book Image

Learn Three.js - Third Edition

1 (1)
By: Jos Dirksen

Overview of this book

WebGL makes it possible to create 3D graphics in the browser without having to use plugins such as Flash and Java. Programming WebGL, however, is difficult and complex. With Three.js, it is possible to create stunning 3D graphics in an intuitive manner using JavaScript, without having to learn WebGL. With this book, you’ll learn how to create and animate beautiful looking 3D scenes directly in your browser-utilizing the full potential of WebGL and modern browsers. It starts with the basic concepts and building blocks used in Three.js. From there on, it will expand on these subjects using extensive examples and code samples. You will learn to create, or load, from externally created models, realistic looking 3D objects using materials and textures. You’ll find out how to easily control the camera using the Three.js built-in in camera controls, which will enable you to fly or walk around the 3D scene you created. You will then use the HTML5 video and canvas elements as a material for your 3D objects and to animate your models. Finally, you will learn to use morph and skeleton-based animation, and even how to add physics, such as gravity and collision detection, to your scene. After reading this book, you’ll know everything that is required to create 3D animated graphics using Three.js.
Table of Contents (14 chapters)

THREE.LatheGeometry

THREE.LatheGeometry allows you to create shapes from a smooth curve. This curve is defined by a number of points (also called knots) and is most often called a spline. This spline is rotated around the central z axis of the object and results in vase-like and bell-like shapes. Once again, the easiest way to understand what THREE.LatheGeometry looks like is by looking at an example. This geometry is shown in 02-advanced-3d-geometries-lathe.html. The following screenshot taken from the example shows this geometry:

In the preceding screenshot, you can see the points used to create this geometry as a set of small red spheres. The positions of these points are passed in to THREE.LatheGeometry, together with a couple of other arguments. Before we look at all the arguments, let's look at the code used to create the individual...