Book Image

Deep Reinforcement Learning Hands-On

By : Maxim Lapan
Book Image

Deep Reinforcement Learning Hands-On

By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
Table of Contents (23 chapters)
Deep Reinforcement Learning Hands-On
Other Books You May Enjoy

Genetic algorithms

Another class of black-box methods that has recently become a popular alternative to the value-based and PG methods is genetic algorithms or GA. It is a large family of optimization methods with more than two decades of history behind it and a simple core idea of generating the population of N individuals, each of which is evaluated with the fitness function. Every individual means some combination of model parameters. Then some subset of top performers is used to produce (which is called mutation) the next generation of the population. This process is repeated until we're satisfied with the performance of our population.

There are lots of different methods in the GA family, for example, how to complete the mutation of the individuals for the next generation or how to rank the performers. Here we'll consider the simple GA method with some extensions, published in the paper by Felipe Petroski Such, Vashisht Madhavan, and others, called Deep Neuroevolution: Genetic Algorithms...