Book Image

PySpark Cookbook

By : Denny Lee, Tomasz Drabas
Book Image

PySpark Cookbook

By: Denny Lee, Tomasz Drabas

Overview of this book

Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem. You’ll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You’ll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you’ll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You’ll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.
Table of Contents (13 chapters)
Title Page
Packt Upsell
Contributors
Preface
Index

Accessing underlying RDDs


Switching to using DataFrames does not mean we need to completely abandon RDDs. Under the hood, DataFrames still use RDDs, but of Row(...) objects, as explained earlier. In this recipe, we will learn how to interact with the underlying RDD of a DataFrame.

Getting ready

To execute this recipe, you need to have a working Spark 2.3 environment. Also, you should have already gone through the previous recipe as we will reuse the data we created there.

There are no other requirements.

How to do it...

In this example, we will extract the size of the HDD and its type into separate columns, and will then calculate the minimum volume needed to put each computer in boxes:

import pyspark.sql as sql
import pyspark.sql.functions as f

sample_data_transformed = (
    sample_data_df
    .rdd
    .map(lambda row: sql.Row(
        **row.asDict()
        , HDD_size=row.HDD.split(' ')[0]
        )
    )
    .map(lambda row: sql.Row(
        **row.asDict()
        , HDD_type=row.HDD.split...